
Potential Flow Interactions with Directional Solidification

Sudhir S. Buddhavarapu I and Eckart Meiburg z

Department of Aerospace Engineering
University of Southern California
Los Angeles, CA - 90089-1191

(i) buddhava@spock.usc.edu / (213) 740-7183
(2)eckart@spock.usc.edu / (213) 740-5376

Fax : (213) 740-7774

.3

NASA Grant # : NAG3-1619

Introduction

The effect of convective melt motion on the growth of morphological instabilities in crystal growth

has been the focus of many studies in the past decade. While most of the efforts have been directed

towards investigating the linear stability aspects, relatively little attention has been devoted to

experimental and numerical studies. Comprehensive reviews are provided by Langer (1980),

Glicksman et al. (1988), and Davis (1990, 1992, 1993). In a pure morphological case, when there is

no flow, morphological changes in the solid-liquid interface are governed by heat conduction and
solute distribution. Under the influence of a convective motion, both heat and solute are

redistributed, thereby affecting the intrinsic morphological phenomenon. The overall effect of the

convective motion could be either stabilizing or destabilizing.

Recent investigations by Coriell et al. (1984), Forth and Wheeler (1989) have predicted

stabilization by a flow parallel to the interface. In the case of non-parallel flows, e.g., stagnation

point flow, Brattkus and Davis (1988) have found a new flow-induced morphological instability

that occurs at long wavelengths and also consists of waves propagating against the flow. Other

studies have addressed the nonlinear aspects (Konstantinos and Brown (1994), Wollkind and Segel

(1970)).

In contrast to the earlier studies, our present investigation focuses on the effects of the potential

flow fields typically encountered in Hele-Shaw cells. Such a Hele-Shaw cell can simulate a gravity-

free environment in the sense that buoyancy-driven convection is largely suppressed, and hence

negligible. Our interest lies both in analyzing the linear stability of the solidification process in the

presence of potential flow fields, as well as in performing high-accuracy nonlinear simulations.

Linear stability analysis can be performed for the flow configuration mentioned above. It is

observed that a parallel potential flow is stabilizing and gives rise to waves traveling downstream.

We have built a highly accurate numerical scheme which is validated at small amplitudes by

comparing with the analytically predicted results for the pure morphological case. We have been

able to observe nonlinear effects at larger times.

Preliminary results for the case when flow is imposed also provide good validation at small

amplitudes.
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Linear Stability Analysis

Based on the governing equations for directional solidification, as reviewed by Davis (1992), a

linear stability analysis is performed for the fully transient equations. Our results agree well with

the quasistationary results predicted by Mullins and Sekerka (1962).

We then consider a uniform Hele-Shaw flow parallel to the solid/liquid interface. The analysis is

similar in concept to the pure morphological case as mentioned earlier, with one additional

dimensionless parameter measuring the ratio of fluid velocity to the pulling speed. We arrive at a

complex algebraic equation, which is solved using a Newton iteration method. This yields the

instabilty growth rates and the wave propagation velocities.

Results indicate that the effect of the uniform flow is stabilizing. This agrees with the experimental

findings currently being carried out by Zhang and Maxworthy at the University of Southern

California. Figure 1 indicates that the larger the uniform flow (U), the smaller the bandwidth of

instability. In principle, it is possible to stabilize all wavenumbers by imposing an appropriate U

over the solid/liquid interface. Results also indicate that the parallel potential flow gives rise to

traveling interfacial waves. These waves travel downstream and are usually on the order of one

percent of the freestream velocity. Figure 2 shows the propagation velocity for different
wavenumbers.

As expected, increasing values of the Sekerka number (M) destabilize the interface by increasing

the bandwidth of instability. Furthermore, higher values of the surface energy parameter (R) lead to

a stabilization of the higher wavenumbers.

It is worth taking a look at the underlying physics of the process. It is well known that the driving

force in the instability is the concentration gradient° In the pure morphological case, steep

concentration gradients exist over the crests and flat concentration gradients in the troughs. This

gives rise to an intrinsically unstable situation where the crests grow faster than the troughs, thus
leading into a runaway condition.

However, when a parallel potential flow is imposed on the interface, the horizontal component of

the perturbation velocity plays a major role in solute redistribution. Solute is transferred from

solute-rich regions over the crests to solute-impoverished regions over the troughs. This re-

arrangement evens out the differences in concentration gradients and thus brings about stability.

Similarly, the vertical component of the perturbation velocity picks up solute from the windward

side of the interface and dumps it on the leeward side of the interface. This generates a small
downstream propagation of the interface.

Nonlinear Numerical Simulations

In order to represent the linear and nonlinear phenomena accurately, it is important to employ

highly accurate computational procedures. Our numerical approach employs a high-order compact

finite difference method (Lele 1992) in the pulling direction. In the compact finite difference
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scheme, we employ discrete approximations of central kind of sixth order accuracy away from the

boundaries. At the boundaries, one-sided stencils of third order accuracy are used. A Fourier

spectral method (Gottlieb and Orszag 1977) is employed in the periodic direction. The combination

of these two schemes allows for the evaluation of highly accurate spatial derivatives. The

calculation is advanced in time by means of a low-storage third order Runge-Kutta scheme (Wray

(1991)). This combination, in conjunction with an analytical mapping leads to excellent accuracy.

To validate our numerical scheme, we performed test calculations to measure the growth of small

perturbations in time for a pure morphological case. With a typical choice of 8 Fourier modes in the

periodic direction and 129 finite difference grid points in the pulling direction, and for a wide range

of parameters such as surface energy, stability parameter, segregation co-efficient, our results

agreed to within 1% of the analytically predicted growth rates obtained from the linear stability

analysis.

Subsequently we carried the simulations to longer times, where nonlinearities come into effect. We

have been able to follow the interfacial growth rates to times when the depth of the grooves is

comparable to their wavelengths. At late times, the interface is dominated by those wavelengths for

which linear theory predicts the largest growth rates. This is indicated in Figure 3.

The next step was to incorporate the flow field into the equations. The velocity distribution is

calculated by employing a boundary element technique. With this technique, one can easily

simulate a potential flow. Preliminary results of interfacial growth rates at small amplitudes show

excellent agreement with those predicted analytically by the linear stability. Interfacial waves are

observed traveling downstream, as predicted by the linear stability analysis.

The boundary element technique mentioned above gives us the opportunity to explore a wide

variety of flow configurations. Various spatial distributions of sources and sinks can be made to

simulate different flow fields in order to investigate opportunities for suppressing the instabilities.

Our numerical simulations have been carried out on CRAY T90 at the San Diego Super Computing

facility at the University of California, San Diego.

NOTE : In the following figures,

R (surface energy parameter)

M (Stability parameter)

K (Segregation co-efficient)

U (non-dimensional velocity)

= - [ 2T_TVk] / imLDc. (l-k)]

= [m(k-1)/k].[c,V/DG] = mGc/G

= C/C ÷

= dimenstional velocity / pulling speed = U ° / V
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Linear Stability (M = 10 ; k = .9 ; R = .001)
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